1,225 research outputs found

    Passive Surveillance of \u3cem\u3eIxodes scapularis\u3c/em\u3e (Say), Their Biting Activity, and Associated Pathogens in Massachusetts

    Get PDF
    A passive surveillance of tick-borne pathogens was conducted over a 7-year period (2006–2012), in which a total of 3551 ticks were submitted to the University of Massachusetts for PCR testing. The vast majority of these ticks were Ixodes scapularis from Massachusetts (N = 2088) and hence were the focus of further analysis. Two TaqMan duplex qPCR assays were developed to test I. scapularis ticks for the presence of three human pathogens: Borrelia burgdorferi, Anaplasma phagocytophilum, and Babesia microti. I. scapularis submissions were concentrated from Cape Cod, the eastern half of the state outside of the Boston metropolitan area, parts of Franklin and Hampshire counties along the Quabbin Reservoir watershed, and southwestern Berkshire county. Differences in seasonal activity pattern were observed for different developmental stages of I. scapularis. The largest proportion of tick bite victims were age 9 years and under. Nymphal ticks were found more often on lower extremities of their hosts, while more adult ticks were found on the head. Overall infection rate of B. burgdorferi, A. phagocytophilum, and B. microti in human-biting ticks was 29.6%, 4.6%, and 1.8%, respectively. B. burgdorferi-infected ticks were widely distributed, but A. phagocytophilum- and B. microti-infected I. scapularis were found mainly in the eastern half of the state. We found that 1.8%, 1.0%, and 0.4% of ticks were coinfected by B. burgdorferi and A. phagocytophilum, B. burgdorferi and B. microti, and A. phagocytophilum and B. microti, respectively, and 0.3% of ticks had triple coinfection

    Cost model relationships between textile manufacturing processes and design details for transport fuselage elements

    Get PDF
    Textile manufacturing processes offer potential cost and weight advantages over traditional composite materials and processes for transport fuselage elements. In the current study, design cost modeling relationships between textile processes and element design details were developed. Such relationships are expected to help future aircraft designers to make timely decisions on the effect of design details and overall configurations on textile fabrication costs. The fundamental advantage of a design cost model is to insure that the element design is cost effective for the intended process. Trade studies on the effects of processing parameters also help to optimize the manufacturing steps for a particular structural element. Two methods of analyzing design detail/process cost relationships developed for the design cost model were pursued in the current study. The first makes use of existing databases and alternative cost modeling methods (e.g. detailed estimating). The second compares design cost model predictions with data collected during the fabrication of seven foot circumferential frames for ATCAS crown test panels. The process used in this case involves 2D dry braiding and resin transfer molding of curved 'J' cross section frame members having design details characteristic of the baseline ATCAS crown design

    Age-Stratified QTL Genome Scan Analyses for Anthropometric Measures

    Get PDF
    With the availability of longitudinal data, age-specific (stratified) or age-adjusted genetic analyses have the potential to localize different putative trait influencing loci. If age does not influence the locus-specific penetrance function within the range examined, age-stratified analyses will tend to yield comparable results for an individual trait. However, age-stratified results should vary across age strata when the locus-specific penetrance function is age dependent. In this paper, age-stratified and age-adjusted quantitative trait loci (QTL) linkage analyses were contrasted for height, weight, body mass index (BMI), and systolic blood pressure on a subset of the Framingham Heart Study. The strata comprised individuals with data present in each of three age groups: 31–49, 50–60, 61–79. Genome-wide QTL analyses were performed using SOLAR. Over all ages, a linkage signal for height was detected on chromosome 14q11.2 near marker GATA74E02A (LOD for ages 31–49 = 2.38, LOD for ages 50–60 = 1.84, LOD for ages 61–79 = 2.45). Evidence of linkage to BMI in the 31–49 age group was found on chromosome 3q22 (GATA3C02, LOD = 2.89, p = 0.0003) at the same location as the signal for weight (LOD = 3.10, p = 0.0002). Linkage was also supported on chromosome 1p22.1 for BMI (LOD = 2.21, p = 0.0014) and weight (LOD = 2.47, p = 0.0007) in the 31–49 age group. Our age-stratified results suggest that QTL that are expressed over long periods of time and affecting multiple, correlated traits may be identified using genome scan and variance-component methodology to help detect early and/or late gene expression

    Detection of Ly\beta auto-correlations and Ly\alpha-Ly\beta cross-correlations in BOSS Data Release 9

    Full text link
    The Lyman-β\beta forest refers to a region in the spectra of distant quasars that lies between the rest-frame Lyman-β\beta and Lyman-γ\gamma emissions. The forest in this region is dominated by a combination of absorption due to resonant Lyα\alpha and Lyβ\beta scattering. When considering the 1D Lyβ\beta forest in addition to the 1D Lyα\alpha forest, the full statistical description of the data requires four 1D power spectra: Lyα\alpha and Lyβ\beta auto-power spectra and the Lyα\alpha-Lyβ\beta real and imaginary cross-power spectra. We describe how these can be measured using an optimal quadratic estimator that naturally disentangles Lyα\alpha and Lyβ\beta contributions. Using a sample of approximately 60,000 quasar sight-lines from the BOSS Data Release 9, we make the measurement of the one-dimensional power spectrum of fluctuations due to the Lyβ\beta resonant scattering. While we have not corrected our measurements for resolution damping of the power and other systematic effects carefully enough to use them for cosmological constraints, we can robustly conclude the following: i) Lyβ\beta power spectrum and Lyα\alpha-Lyβ\beta cross spectra are detected with high statistical significance; ii) the cross-correlation coefficient is 1\approx 1 on large scales; iii) the Lyβ\beta measurements are contaminated by the associated OVI absorption, which is analogous to the SiIII contamination of the Lyα\alpha forest. Measurements of the Lyβ\beta forest will allow extension of the usable path-length for the Lyα\alpha measurements while allowing a better understanding of the physics of intergalactic medium and thus more robust cosmological constraints.Comment: 26 pages, 10 figures; matches version accepted by JCA

    Imputing Amino Acid Polymorphisms in Human Leukocyte Antigens

    Get PDF
    DNA sequence variation within human leukocyte antigen (HLA) genes mediate susceptibility to a wide range of human diseases. The complex genetic structure of the major histocompatibility complex (MHC) makes it difficult, however, to collect genotyping data in large cohorts. Long-range linkage disequilibrium between HLA loci and SNP markers across the major histocompatibility complex (MHC) region offers an alternative approach through imputation to interrogate HLA variation in existing GWAS data sets. Here we describe a computational strategy, SNP2HLA, to impute classical alleles and amino acid polymorphisms at class I (HLA-A, -B, -C) and class II (-DPA1, -DPB1, -DQA1, -DQB1, and -DRB1) loci. To characterize performance of SNP2HLA, we constructed two European ancestry reference panels, one based on data collected in HapMap-CEPH pedigrees (90 individuals) and another based on data collected by the Type 1 Diabetes Genetics Consortium (T1DGC, 5,225 individuals). We imputed HLA alleles in an independent data set from the British 1958 Birth Cohort (N = 918) with gold standard four-digit HLA types and SNPs genotyped using the Affymetrix GeneChip 500 K and Illumina Immunochip microarrays. We demonstrate that the sample size of the reference panel, rather than SNP density of the genotyping platform, is critical to achieve high imputation accuracy. Using the larger T1DGC reference panel, the average accuracy at four-digit resolution is 94.7% using the low-density Affymetrix GeneChip 500 K, and 96.7% using the high-density Illumina Immunochip. For amino acid polymorphisms within HLA genes, we achieve 98.6% and 99.3% accuracy using the Affymetrix GeneChip 500 K and Illumina Immunochip, respectively. Finally, we demonstrate how imputation and association testing at amino acid resolution can facilitate fine-mapping of primary MHC association signals, giving a specific example from type 1 diabetes

    Age-stratified heritability estimation in the Framingham Heart Study families

    Get PDF
    The Framingham Heart Study provides a unique source of longitudinal family data related to CVD risk factors. Age-stratified heritability estimates were obtained over three age groups (31–49 years, 50–60 years, and 61–79 years), reflecting the longitudinal nature of the data, for four quantitative traits. Age-adjusted heritability estimates were obtained at a single common time point for the same four quantitative traits. The importance of these groups is that they consist of the same individuals. The highest age-stratified heritability estimate (h(2 )= 0.88 (± 0.06)) was for height in the model adjusting for gender over all three age groups. SBP gave the lowest heritability estimate (h(2 )= 0.15 (± 0.11)) for the 70 age group in the model adjusting for gender, height, BMI, smoker, and drinker. BMI had slightly higher estimates (h(2 )= 0.64 (± 0.11)) in the 40 age group than previously published. The highest age-adjusted heritability estimate (h(2 )= 0.90 (± 0.06)) was for height in the model adjusting for gender. SBP gave the lowest heritability estimate (h(2 )= 0.38 (± 0.09)) for unadjusted model. These results indicate that some common, complex traits may vary little in their genetic architecture over time and suggest that a common set of genes may be contributing to observed variation for these longitudinally collected phenotypes

    Significant linkage at chromosome 19q for otitis media with effusion and/or recurrent otitis media (COME/ROM)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In previous analyses, we identified a region of chromosome 19 as harboring a susceptibility locus for chronic otitis media with effusion and/or recurrent otitis media (COME/ROM). Our aim was to further localize the linkage signal and ultimately identify the causative variant or variants. We followed up our previous linkage scan with dense SNP genotyping across in a 5 Mb region. A total of 607 individuals from 139 families, including 159 affected sib pairs and 62 second-degree affected relative pairs, were genotyped at 1,091 SNPs. We carried out a nonparametric linkage analysis, modeling marker-to-marker linkage disequilibrium.</p> <p>Results</p> <p>The maximum log of the odds (LOD) score increased to 3.75 (P = 1.6 × 10<sup>-5</sup>) at position 63.4 Mb, with a LOD-1 support interval between 61.6 Mb and 63.8 Mb, providing significant evidence of linkage between this region and COME/ROM. The support interval contains over 90 known genes, including several genes involved in the inflammasome protein complex, a key regulator of the innate immune response to harmful exogenous or endogenous stimuli. Parametric linkage analysis suggests that for a sib of an affected individual, the recurrence risk of COME/ROM due to this linkage region is twice the recurrence risk in the population. We examined potential associations between the SNPs genotyped in this region and COME/ROM, however none provided evidence for association.</p> <p>Conclusion</p> <p>This study has refined the 19q region of linkage with COME/ROM, and association results suggest that the linkage signal may be due to rare variants.</p
    corecore